

DOM	Manipulation
By	Chris	Ferdinandi
Go	Make	Things,	LLC
v4.0.0

Copyright	2021	Chris	Ferdinandi	and	Go	Make	Things,	LLC.	All
Rights	Reserved.

Table	of	Contents

1.	 Intro

A	quick	word	about	browser	compatibility
Using	the	code	in	this	guide

2.	 Selectors

document.querySelectorAll()
document.querySelector()
Element.matches()
Type-specific	selector	methods

3.	 Loops

for
for…of
for…in
Skipping	and	ending	loops
Array.forEach()	and	NodeList.forEach()

4.	 Classes

Element.classList
Element.className

5.	 Styles

Inline	Styles
Computed	Styles

6.	 Attributes	&	Properties

Element.getAttribute(),	Element.setAttribute(),
Element.removeAttribute(),	and
Element.hasAttribute()
Properties

Attributes	vs.	Properties

7.	 Event	Listeners

EventTarget.addEventListener()
Multiple	Targets
Capturing	events	that	don’t	bubble
Multiple	Events

8.	 Putting	it	all	together

Getting	Setup
Listening	for	clicks
Determining	whether	to	show	or	hide	passwords
Showing	and	hiding	passwords
Styling	the	button

9.	 About	the	Author

Intro

In	this	guide,	you’ll	learn:

How	to	get	elements	in	the	DOM.
How	to	loop	through	arrays,	objects,	NodeLists,	and	other
iterable	items.
How	to	get,	set,	and	remove	classes.
How	to	manipulate,	remove,	and	update	styles.
How	to	get,	set,	and	remove	attributes.
How	to	listen	for	events	in	the	DOM.
Techniques	for	improving	event	listener	performance.

A	quick	word	about	browser	compatibility

This	guide	focuses	on	methods	and	APIs	that	are	supported	in
all	modern	browsers.	That	means	the	latest	versions	of	Edge,
Chrome,	Firefox,	Opera,	Safari,	and	the	latest	mobile	browsers
for	Android	and	iOS.

Using	the	code	in	this	guide

Unless	otherwise	noted,	all	of	the	code	in	this	book	is	free	to
use	under	the	MIT	license.	You	can	view	of	copy	of	the	license
at	https://gomakethings.com/mit.

Let’s	get	started!

https://gomakethings.com/mit

Selectors

How	to	get	elements	in	the	DOM.

document.querySelectorAll()

Find	all	matching	elements	on	a	page.	You	can	use	any	valid
CSS	selector.

document.querySelector()

Find	the	first	matching	element	on	a	page.

//	Get	all	button	elements
let	buttons	=	
document.querySelectorAll('button');

//	Get	all	elements	with	the	.bg-red	class
let	elemsRed	=	
document.querySelectorAll('.bg-red');

//	Get	all	elements	with	the	[data-snack]	
attribute
let	elemsSnacks	=	
document.querySelectorAll('[data-snack]');

If	an	element	isn’t	found,	querySelector()	returns	null.	If

you	try	to	do	something	with	the	nonexistent	element,	an	error
will	get	thrown.	You	should	check	that	a	matching	element	was
found	before	using	it.

Element.matches()

//	The	first	button
let	button	=	
document.querySelector('button');

//	The	first	element	with	the	.bg-red	class

let	red	=	document.querySelector('.bg-red');

//	The	first	element	with	a	data	attribute	
of	snack	equal	to	carrots
let	carrots	=	document.querySelector('[data-
snack="carrots"]');

//	An	element	that	doesn't	exist
let	none	=	document.querySelector('.bg-
orange');

//	Verify	element	exists	before	doing	
anything	with	it

if	(none)	{

				//	Do	something...

}

Check	if	an	element	would	be	selected	by	a	particular	selector
or	set	of	selectors.	Returns	true	if	the	element	is	a	match,	and	

false	when	it’s	not.

Type-specific	selector	methods

There	are	other	selector	methods	that	target	elements	by
specific	type.

The	document.getElementById()	method	gets	elements	by

their	ID,	predates	IE6.	The	
document.getElementsByName()	method	returns	a

NodeList	of	elements	with	matching	[name]	attributes.	It	also

has	deep	backwards	compatibility.

If	you	wanted	to	get	all	elements	of	a	certain	type,	you	could
use	document.getElementsByTagName(),	which	works

back	to	IE6.	And	the	new	kid	on	the	block,	

//	Check	if	the	first	.bg-red	element	has	
the	[data-snack	attribute]

let	red	=	document.querySelector('.bg-red');

if	(red.matches('[data-snack]'))	{

				console.log('Yummy	snack!');

}	else	{

				console.log('No	snacks');

}

document.getElementsByClassName(),	gets	all	elements

that	match	a	specific	class.	It	works	in	IE9	and	up.

I	don’t	recommend	using	any	of	them.

I’m	lazy.	I	don’t	like	to	think	about	which	selector	is	the	right
one	to	use.	The	document.querySelector()	and	

document.querySelectorAll()	methods	do	everything

those	other	methods	do	and	more.

The	toughest	decision	I	have	to	make	is	whether	I	need	all
matching	elements	or	just	the	first	one.

Loops

How	to	loop	through	arrays,	objects,	and	array-like	objects.

for

Loop	through	arrays,	NodeLists,	and	other	array-like	objects.

In	the	first	part	of	the	loop,	before	the	first	semicolon,	we
set	a	counter	variable	(typically	i,	but	it	can	be	anything)

to	0.

The	second	part,	between	the	two	semicolons,	is	the	test
we	check	against	after	each	iteration	of	the	loop.	In	this
case,	we	want	to	make	sure	the	counter	value	is	less	than
the	total	number	of	items	in	our	array.	We	do	this	by
checking	the	.length	of	our	array.

Finally,	after	the	second	semicolon,	we	specify	what	to	run

let	sandwiches	=	['turkey',	'tuna',	'ham',	
'pb&j'];

//	logs	0,	"tuna",	1,	"ham",	2,	"turkey",	3,	
"pb&j"
for	(let	i	=	0;	i	<	sandwiches.length;	i++)	
{

				console.log(i);	//	index

				console.log(sandwiches[i]);	//	value

}

after	each	loop.	In	this	case,	we’re	adding	1	to	the	value	of	

i	with	i++.

We	can	then	use	i	to	grab	the	current	item	in	the	loop	from	our

array.

for…of

Loop	over	iterable	objects.	That	includes	strings,	arrays,	and
other	array-like	objects	such	as	NodeLists,	HTMLCollections,
and	HTMLFormControlsCollection,	but	not	plain	objects	({}).

In	a	for...of	loop,	you	define	a	variable	to	represent	the

current	item	of	the	iterable	that	you’re	looping	through.	Inside

the	block	(the	stuff	between	curly	brackets),	you	can	use	that
variable	to	reference	the	current	item.

for…in

let	sandwiches	=	['turkey',	'tuna',	'ham',	
'pb&j'];

//	logs	"tuna",	"ham",	"turkey",	"pb&j"

for	(let	sandwich	of	sandwiches)	{

				console.log(sandwich);

}

Loop	over	plain	objects	({}).

The	first	part,	key,	is	a	variable	that	gets	assigned	to	the	object

key	on	each	loop.	The	second	part	(in	the	example	below,	
lunch),	is	the	object	to	loop	over.

In	a	for...in	loop,	you	define	a	variable	to	represent	the	key	

in	the	object	that	you’re	looping	through.	Inside	the	block	(the

stuff	between	curly	brackets),	you	can	use	that	variable	to	get
the	key	name	and	the	value	of	that	key.

let	lunch	=	{

				sandwich:	'ham',

				snack:	'chips',

				drink:	'soda',

				desert:	'cookie',

				guests:	3,

				alcohol:	false,

};

//	logs	"sandwich",	"ham",	"snack",	"chips",	
"drink",	"soda",	"desert",	"cookie",	
"guests",	3,	"alcohol",	false

for	(let	key	in	lunch)	{

				console.log(key);	//	key

				console.log(lunch[key]);	//	value

}

Skipping	and	ending	loops

You	can	skip	to	the	next	item	in	a	loop	using	continue,	or	end

the	loop	altogether	with	break.	These	work	with	for,	

for...of,	and	for...in	loops.

/**

	*	Skipping	a	loop

	*/
let	sandwiches	=	['turkey',	'tuna',	'ham',	
'pb&j'];

//	logs	"turkey",	"tuna",	"turkey",	"pb&j"

for	(let	sandwich	of	sandwiches)	{

				//	Skip	to	the	next	item	in	the	loop

				if	(sandwich	===	'ham')	continue;

				console.log(sandwich);

}

/**

	*	Breaking	a	loop

	*/

let	lunch	=	{

				sandwich:	'ham',

				snack:	'chips',

				drink:	'soda',

				desert:	'cookie',

Array.forEach()	and	NodeList.forEach()

The	Array.forEach()	and	NodeList.forEach()	methods

provide	a	simpler	way	to	iterate	over	arrays	and	NodeLists
while	still	having	access	to	the	index.

You	pass	a	callback	function	into	the	forEach()	method.	The

callback	itself	accepts	three	arguments:	the	current	item	in	the
loop,	the	index	of	the	current	item	in	the	loop,	and	the	array
itself.	All	three	are	optional,	and	you	can	name	them	anything
you	want.

				desert:	'cookie',

				guests:	3,

				alcohol:	false,

};

//	logs	"sandwich",	"ham",	"snack",	"chips"

for	(let	key	in	lunch)	{

				if	(key	===	'drink')	break;

				console.log(lunch[key]);

}

Unlike	with	for,	for...of,	and	for...in	loops,	you	can’t

end	a	forEach()	callback	function	before	it’s	looped	through

all	items.	You	can	return	to	end	the	current	loop	(like	you

would	with	continue),	but	there’s	no	way	to	break	the	loop.

Because	of	that,	I	generally	prefer	using	a	for...of	loop

unless	I	explicitly	need	the	index.

let	sandwiches	=	['turkey',	'tuna',	'ham',	
'pb&j'];

//	logs	0,	"tuna",	1,	"ham",	2,	"turkey",	3,	
"pb&j"
sandwiches.forEach(function	(sandwich,	
index)	{

				console.log(index);	//	index

				console.log(sandwich);	//	value

});

//	Skip	"ham"

//	logs	0,	"tuna",	2,	"turkey",	3,	"pb&j"
sandwiches.forEach(function	(sandwich,	
index)	{

				if	(sandwich	===	'ham')	return;

				console.log(index);	//	index

				console.log(sandwich);	//	value

});

Classes

How	to	add,	remove,	toggle,	and	check	for	classes	on	an
element.

Element.classList

The	Element.classList	API	provides	a	simple	way	to	add,

remove,	toggle,	and	check	for	classes	on	an	element.

Use	the	add()	method	to	add	a	class,	the	remove()	method	to

remove	a	class,	the	toggle()	method	to	toggle	a	class	on	or

off,	and	the	contains()	method	to	check	if	a	class	exists.

Element.className

Get	all	of	the	classes	on	an	element	as	a	string,	add	a	class	or
classes,	or	completely	replace	or	remove	all	classes.

let	elem	=	
document.querySelector('#sandwich');

//	Add	the	.turkey	class

elem.classList.add('turkey');

//	Remove	the	.tuna	class

elem.classList.remove('tuna');

//	Toggle	the	.tomato	class	on	or	off
//	(Add	the	class	if	it's	not	already	on	the	
element,	remove	it	if	it	is.)

elem.classList.toggle('tomato');

//	Check	if	an	element	has	the	.mayo	class

if	(elem.classList.contains('mayo'))	{

				console.log('add	mayo!');

}

let	elem	=	document.querySelector('div');

//	Get	all	of	the	classes	on	an	element

let	elemClasses	=	elem.className;

//	Add	a	class	to	an	element

elem.className	+=	'	vanilla-js';

//	Completely	replace	all	classes	on	an	
element

elem.className	=	'new-class';

Styles

How	to	get	and	set	styles	(as	in,	CSS)	for	an	element.

Vanilla	JavaScript	uses	camel	cased	versions	of	the	attributes
you	would	use	in	CSS.	The	Mozilla	Developer	Network	provides
a	comprehensive	list	of	available	attributes	and	their	JavaScript
counterparts.

Inline	Styles

Get	and	set	inline	styles	for	an	element	with	the	
Element.style	property.

The	Element.style	property	is	a	read-only	object.	You	can

get	and	set	individual	style	properties	on	it	using	camelCase
style	names	as	properties	on	the	Element.style	object.

<p	id="sandwich"	style="background-color:	
green;	color:	white;">

				Sandwich

</p>

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Properties_Reference

You	can	also	get	and	set	a	string	representation	of	the	entire
inline	style	property	on	the	element	itself	with	the	

Element.style.cssText	property.

let	sandwich	=	
document.querySelector('#sandwich');

//	Get	a	style
//	If	this	style	is	not	set	as	an	inline	
style	directly	on	the	element,	it	returns	an	
empty	string
let	bgColor	=	
sandwich.style.backgroundColor;	//	this	will	
return	"green"
let	fontWeight	=	sandwich.style.fontWeight;	
//	this	will	return	""

//	Set	the	background-color	style	property

sandwich.style.backgroundColor	=	'purple';

Computed	Styles

The	window.getComputedStyle()	method	gets	the	actual

computed	style	of	an	element.	This	factors	in	browser	default
stylesheets	as	well	as	external	styles	being	used	on	the	page.

//	Get	the	styles	on	an	element
//	returns	"background-color:	green;	color:	
white;"

let	styles	=	sandwich.style.cssText;

//	Completely	replace	the	inline	styles	on	
an	element
sandwich.style.cssText	=	'font-size:	2em;	
font-weight:	bold;';

//	Add	additional	styles

sandwich.style.cssText	+=	'color:	purple;';

let	sandwich	=	
document.querySelector('#sandwich');
let	bgColor	=	
window.getComputedStyle(sandwich).background
Color;

Attributes	&	Properties

How	to	get,	set,	and	remove	attributes	for	an	element.

Element.getAttribute(),
Element.setAttribute(),
Element.removeAttribute(),	and
Element.hasAttribute()

Get,	set,	remove,	and	check	for	the	existence	of	attributes
(including	data	attributes)	on	an	element.

If	an	attribute	does	not	exist	on	an	element,	the	
Element.getAttribute()	method	returns	null.

Properties

HTML	elements	have	dozens	of	properties	that	you	can	access
directly.

Some	of	them	are	read	only,	meaning	you	can	get	their	value
but	not	set	it.	Others	can	be	used	to	both	read	and	set	values.
You	can	find	a	full	list	on	the	Mozilla	Developer	Network.

let	elem	=	document.querySelector('#lunch');

//	Get	the	value	of	the	[data-sandwich]	
attribute
let	sandwich	=	elem.getAttribute('data-
sandwich');

//	Set	a	value	for	the	[data-sandwich]	
attribute
elem.setAttribute('data-sandwich',	
'turkey');

//	Remove	the	[data-chips]	attribute

elem.removeAttribute('data-chips');

//	Check	if	an	element	has	the	`[data-
drink]`	attribute

if	(elem.hasAttribute('data-drink'))	{

				console.log('Add	a	drink!');

}

https://developer.mozilla.org/en-US/docs/Web/API/element

Attributes	vs.	Properties

In	JavaScript,	an	element	has	attributes	and	properties.	The
terms	are	often	used	interchangeably,	but	they’re	actually	two
separate	things.

An	attribute	is	the	initial	state	when	rendered	in	the	DOM.	A
property	is	the	current	state.

In	most	cases,	attributes	and	properties	are	kept	in-sync
automatically.	For	example,	when	you	use	setAttribute()

to	update	an	ID	attribute,	the	id	property	is	updated	as	well.

let	elem	=	document.querySelector('#main');

//	Get	the	ID	of	the	element

//	returns	"main"

let	id	=	elem.id;

//	Set	the	ID	of	the	element

elem.id	=	'secondary';

//	Get	the	parentNode	of	the	element

//	This	property	is	read-only

let	parent	=	elem.parentNode;

<p>Hello</p>

However,	user-changeable	form	properties—noteably,	value,	

checked,	and	selected—are	not	automatically	synced.

let	p	=	document.querySelector('p');

//	Update	the	ID

p.setAttribute('id',	'first-paragraph');

//	These	both	return	"first-paragraph"

let	id1	=	p.getAttribute('id');

let	id2	=	p.id;

<label	for="greeting">Greeting</label>

<input	type="text"	id="greeting">

If	you	try	to	update	the	value	property	directly,	that	will

update	the	UI.

This	allows	you	to	choose	different	approaches	depending	on
whether	you	want	to	overwrite	user	updates	or	not.

If	you	want	to	update	a	field,	but	only	if	the	user	hasn’t	made
any	changes,	use	Element.setAttribute().	If	you	want	to

overwrite	anything	they’ve	done,	use	the	value	property.

let	greeting	=	
document.querySelector('#greeting');

//	Update	the	value
greeting.setAttribute('value',	'Hello	
there!');

//	If	you	haven't	made	any	updates	to	the	
field,	these	both	return	"Hello	there!"
//	If	you	HAVE	updated	the	field,	val1	
returns	whatever	was	typed	in	the	field	
instead

let	val1	=	greeting.value;

let	val2	=	greeting.getAttribute('value');

greeting.value	=	'Hello	there!';

Event	Listeners

How	to	listen	for	browser	events	and	run	callback	functions
when	they	happen.

EventTarget.addEventListener()

Listen	for	events	on	an	element.	You	can	find	a	full	list	of
available	events	on	the	Mozilla	Developer	Network.

Run	the	EventTarget.addEventListener()	method	on

the	element	you	want	to	listen	for	events	on.	It	accepts	two
arguments:	the	event	to	listen	for,	and	a	callback	function	to
run	when	the	event	happens.

You	can	pass	the	event	into	the	callback	function	as	an

argument.	The	event.target	property	is	the	element	that

triggered	the	event.	The	event	object	has	other	properties	as

well,	many	of	them	specific	to	the	type	of	event	that	occurred.

https://developer.mozilla.org/en-US/docs/Web/Events

Multiple	Targets

The	EventTarget.addEventListener()	method	only	be

attached	to	an	individual	element.	You	can’t	attach	it	to	an
array	or	node	list	of	matching	elements	like	you	might	in
jQuery	or	other	frameworks.

let	btn	=	document.querySelector('#click-
me');

btn.addEventListener('click',	function	
(event)	{

				console.log(event);	//	The	event	details
				console.log(event.target);	//	The	
clicked	element

});

//	This	won't	work!
let	btns	=	
document.querySelectorAll('.click-me');

btns.addEventListener('click',	function	
(event)	{

				console.log(event);	//	The	event	details
				console.log(event.target);	//	The	
clicked	element

});

For	performance	reasons,	you	also	should	not	loop	over	each
element	and	attach	an	even	listener	to	it.

Fortunately,	there’s	a	really	easy	and	performant	way	to	get	a
jQuery-like	experience:	event	delegation	or	event	bubbling.

Instead	of	listening	for	an	event	on	specific	elements,	you
attach	your	listener	to	a	parent	element	that	your	elements	are
contained	within,	such	as	the	window	or	document.	Events

that	happens	on	elements	inside	it	bubble	up.	We	can	then
check	to	see	if	the	item	that	triggered	the	event	has	a	matching
selector.

/**

	*	This	works,	but	it's	bad	for	performance

	*	DON'T	DO	IT!

	*/
let	btns	=	
document.querySelectorAll('.click-me');

for	(let	btn	of	btns)	{
				btn.addEventListener('click',	function	
(event)	{
								console.log(event);	//	The	event	
details
								console.log(event.target);	//	The	
clicked	element

				});

}

Yes,	it	is	actually	better	for	performance	to	listen	to	all	clicks
on	the	document	than	have	a	bunch	of	individual	event
listeners.

As	a	side	benefit,	you	can	dynamically	load	matching	elements
to	the	DOM	after	the	event	listener	is	already	set	up	and	it	will
still	work.

Capturing	events	that	don’t	bubble

Certain	events,	like	focus,	don’t	bubble.	In	order	to	use	event

delegation	with	events	that	don’t	bubble,	you	can	set	an
optional	third	argument	on	the	
EventTarget.addEventListener()	method,	called	

useCapture,	to	true.

//	Listen	for	clicks	on	the	entire	window
document.addEventListener('click',	function	
(event)	{

				//	If	the	clicked	element	has	the	
`.click-me`	class,	it's	a	match!

				if	(event.target.matches('.click-me'))	{

								//	Do	something...

				}

});

You	can	determine	if	useCapture	should	be	set	to	true	or	

false	by	looking	at	the	event	details	page	on	the	Mozilla

Developer	Network	(like	this	one	for	the	focus	event).

If	Bubbles	in	the	chart	at	the	top	of	the	page	is	“No,”	you	need
to	set	useCapture	to	true	to	use	event	delegation.

Multiple	Events

In	vanilla	JavaScript,	each	event	type	requires	it’s	own	event
listener.	Unfortunately,	you	can’t	pass	in	multiple	events	to	a
single	listener	like	you	might	in	jQuery	and	other	frameworks.

//	Listen	for	all	focus	events	in	the	
document
document.addEventListener('focus',	function	
(event)	{
				//	Run	functions	whenever	an	element	in	
the	document	comes	into	focus

},	true);

https://developer.mozilla.org/en-US/docs/Web/API/Element/focus_event

Instead,	create	a	named	function	and	pass	that	into	your	event
listener.	This	lets	you	avoid	writing	the	same	code	over	and
over	again,	and	keeps	your	code	more	DRY.

For	named	callback	functions,	do	not	include	the	parentheses
(())	on	the	function.

The	event	object	is	automatically	passed	in	as	an	argument.

You	can	determine	which	type	of	event	triggered	the	callback
function	with	the	event.type	property.

/**

	*	This	won't	work!

	*/
window.addEventListener('click,	scroll',	
function	(event)	{

				console.log(event);	//	The	event	details
				console.log(event.target);	//	The	
clicked	element

});

//	Setup	our	function	to	run	on	various	
events

function	logTheEvent	(event)	{
				console.log('The	following	event	
happened:	'	+	event.type);

}

//	Add	our	event	listeners
document.addEventListener('click',	
logTheEvent);
window.addEventListener('scroll',	
logTheEvent);

Putting	it	all	together

To	make	this	all	tangible,	let’s	work	on	a	project	together.	We’ll
build	a	script	that	let’s	users	toggle	the	visibility	of	password
fields	in	a	form.

Getting	Setup

The	template	has	some	starting	markup:	a	form	with	two
password	fields	and	some	buttons.

In	the	form,	there’s	a	button	with	the	[data-password]

attribute	that	will	be	used	to	toggle	the	password	field
visibility.	That	button	has	two	additional	attributes.

The	[type="button"]	attribute	prevents	the	button	from

submitting	the	form	when	clicked.

I’ve	also	added	some	default	CSS	so	that	we	can	focus	on	the
JavaScript.

Alright,	let’s	get	started.

Listening	for	clicks

The	first	thing	we	want	to	do	is	detect	clicks	on	our	[data-

password]	button.	Let’s	use	the	

document.querySelector()	method	to	get	button	and	save

it	to	the	toggle	variable.

<form>

				<label	for="current-pw">Current	
Password</label>

				<input	type="password"	id="current-pw">

				<label	for="new-pw">New	Password</label>

				<input	type="password"	id="new-pw">

				<p><button	type="button"	data-
password>Show	Passwords</button></p>

				<p><button>Change	Password</button></p>

</form>

Next,	we’ll	use	the	addEventListener()	method	to	listen	for

click	events	on	it,	and	do	things	when	the	button	is	clicked.

Determining	whether	to	show	or	hide
passwords

When	the	button	is	clicked,	we	need	to	determine	if	we	should
show	or	hide	passwords.	One	simple	way	to	do	that	is	to	check
if	the	button	is	currently	selected	or	not.

The	[aria-pressed]	attribute	is	used	to	tell	screen	readers

(software	that	people	with	visual	impairments	use	to	interact
with	web	pages)	if	a	state-based	button	like	this	one	is	pressed

//	Get	the	password	toggle
let	toggle	=	document.querySelector('[data-
password]');

//	Get	the	password	toggle
let	toggle	=	document.querySelector('[data-
password]');

//	Listen	for	clicks	on	the	toggle	button
toggle.addEventListener('click',	function	
(event)	{

				//	Do	stuff...

});

or	not.	It’s	exactly	what	we	need!

The	[aria-pressed]	attribute	has	a	value	of	true	when	the

button	is	selected,	and	false	when	it’s	not.	Let’s	start	by

adding	it	to	our	button.

Inside	our	event	listener’s	callback	function,	we	can	check	the
value	of	the	[aria-pressed]	attribute	to	determine	if	the

button	is	currently	active	or	not.

We’ll	use	the	event.target	to	get	the	button	that	triggered

the	click	event.	We	could	use	our	toggle	variable,	but	I	want

to	show	the	different	options	you	have.

We’ll	use	the	getAttribute()	method	to	get	the	value	of	

[aria-pressed].

<button	type="button"	data-password	aria-
pressed="false">Show	Passwords</button>

//	Listen	for	clicks	on	the	toggle	button
toggle.addEventListener('click',	function	
(event)	{

				//	Get	the	value	of	the	[aria-pressed]	
attribute
				let	pressed	=	
event.target.getAttribute('aria-pressed');

});

Next,	we’ll	use	the	strict	equals	operator	(===)	to	check	if	

pressed	has	a	value	of	false.

If	it	does,	we	need	to	show	the	password	fields	and	update	the
value	of	[aria-pressed]	to	true.	If	not,	we	need	to	hide	the

fields	and	change	the	value	to	false.

We	can	use	the	setAttribute()	method	to	set	the	[aria-

pressed]	attribute.

Showing	and	hiding	passwords

//	Listen	for	clicks	on	the	toggle	button
toggle.addEventListener('click',	function	
(event)	{

				//	Get	the	value	of	the	[aria-pressed]	
attribute
				let	pressed	=	
event.target.getAttribute('aria-pressed');

				//	If	button	isn't	pressed	yet,	press	it	
and	show	fields
				//	Otherwise,	unpress	it	and	hide	the	
fields

				if	(pressed	===	'false')	{
								event.target.setAttribute('aria-
pressed',	'true');

								//	Show	the	fields...

				}	else	{
								event.target.setAttribute('aria-
pressed',	'false');

								//	Hide	the	fields...

				}

});

Now,	we’re	ready	to	actually	show	and	hide	our	password	fields.
Let’s	use	the	document.querySelectorAll()	method	to

get	all	fields	with	the	[type="password"]	attribute.

We’ll	use	a	for...of	loop	to	loop	through	each	of	our	

fields,	and	the	type	property	to	update	the	field	type	as

needed.

If	the	password	should	be	visible,	we’ll	change	the	type	to	

text.	If	it	should	be	hidden,	we’ll	change	it	back	to	password.

//	Get	the	password	toggle	and	password	
fields
let	toggle	=	document.querySelector('[data-
password]');
let	fields	=	
document.querySelectorAll('[type="password"]
');

//	Listen	for	clicks	on	the	toggle	button
toggle.addEventListener('click',	function	
(event)	{

				//	Get	the	value	of	the	[aria-pressed]	
attribute
				let	pressed	=	
event.target.getAttribute('aria-pressed');

				//	If	button	isn't	pressed	yet,	press	it	
and	show	fields
				//	Otherwise,	unpress	it	and	hide	the	
fields

				if	(pressed	===	'false')	{
								event.target.setAttribute('aria-
pressed',	'true');

								for	(let	field	of	fields)	{

												field.type	=	'text';

								}

				}	else	{
								event.target.setAttribute('aria-
pressed',	'false');

								for	(let	field	of	fields)	{

												field.type	=	'password';

								}

				}

});

Now,	the	passwords	will	show	or	hide	based	on	the	button
state.

There’s	just	one	last	thing	to	do:	style	the	button	so	users	can
visually	tell	if	it’s	selected	or	not.

Styling	the	button

One	really	cool	thing	about	attributes	is	that	they	can	be	used
to	style	elements	just	like	classes	and	IDs.

Since	the	[aria-pressed]	attribute	already	holds

information	about	whether	or	not	the	button	is	selected,	it
makes	sense	to	use	it	to	style	the	button	visually	as	well.	Let’s
give	a	blue	background	with	white	text	when	it’s	active.

Congratulations!	You	just	created	a	show	password	script	using
a	variety	of	DOM	manipulation	techniques.

/**

	*	Active	Button	Style

	*/

[aria-pressed="true"]	{

				background-color:	#0088cc;

				color:	#ffffff;

}

About	the	Author

Hi,	I’m	Chris	Ferdinandi.	I	believe	there’s	a	simpler,	more
resilient	way	to	make	things	for	the	web.

I’m	the	author	of	the	Vanilla	JS	Pocket	Guide	series,	creator	of
the	Vanilla	JS	Academy	training	program,	and	host	of	the
Vanilla	JS	Podcast.	My	developer	tips	newsletter	is	read	by
thousands	of	developers	each	weekday.

I	love	pirates,	puppies,	and	Pixar	movies,	and	live	near	horse
farms	in	rural	Massachusetts.

You	can	find	me:

On	my	website	at	GoMakeThings.com.
By	email	at	chris@gomakethings.com.
On	Twitter	at	@ChrisFerdinandi.

https://gomakethings.com
mailto:chris@gomakethings.com
https://twitter.com/ChrisFerdinandi

	DOM Manipulation
	Table of Contents
	Intro
	A quick word about browser compatibility
	Using the code in this guide

	Selectors
	document.querySelectorAll()
	document.querySelector()
	Element.matches()
	Type-specific selector methods

	Loops
	for
	for…of
	for…in
	Skipping and ending loops
	Array.forEach() and NodeList.forEach()

	Classes
	Element.classList
	Element.className

	Styles
	Inline Styles
	Computed Styles

	Attributes & Properties
	Element.getAttribute(), Element.setAttribute(), Element.removeAttribute(), and Element.hasAttribute()
	Properties
	Attributes vs. Properties

	Event Listeners
	EventTarget.addEventListener()
	Multiple Targets
	Capturing events that don’t bubble
	Multiple Events

	Putting it all together
	Getting Setup
	Listening for clicks
	Determining whether to show or hide passwords
	Showing and hiding passwords
	Styling the button

	About the Author

